Predicting caloric and feed efficiency in turkeys using the group method of data handling-type neural networks.
نویسندگان
چکیده
Neural networks (NN) are a relatively new option to model growth in animal production systems. One self-organizing submodel of artificial NN is the group method of data handling (GMDH)-type NN. The use of such self-organizing networks has led to successful application of the GMDH algorithm over a broad range of areas in engineering, science, and economics. The present study aimed to apply the GMDH-type NN to predict caloric efficiency (CE, g of gain/kcal of caloric intake) and feed efficiency (FE, kg of gain/kg of feed intake) in tom and hen turkeys fed diets containing different energy and amino acid levels. Involved effective input parameters in prediction of CE and FE were age, dietary ME, CP, Met, and Lys. Quantitative examination of the goodness of fit for the predictive models was made using R2 and error measurement indices commonly used to evaluate forecasting models. Statistical performance of the developed GMDH-type NN models revealed close agreement between observed and predicted values of CE and FE. In conclusion, using such powerful models can enhance our ability to predict economic traits, make precise prediction of nutrition requirements, and achieve optimal performance in poultry production.
منابع مشابه
Pareto Optimization of Two-element Wing Models with Morphing Flap Using Computational Fluid Dynamics, Grouped Method of Data handling Artificial Neural Networks and Genetic Algorithms
A multi-objective optimization (MOO) of two-element wing models with morphing flap by using computational fluid dynamics (CFD) techniques, artificial neural networks (ANN), and non-dominated sorting genetic algorithms (NSGA II), is performed in this paper. At first, the domain is solved numerically in various two-element wing models with morphing flap using CFD techniques and lift (L) and drag ...
متن کاملModeling and Hybrid Pareto Optimization of Cyclone Separators Using Group Method of Data Handling (GMDH) and Particle Swarm Optimization (PSO)
In present study, a three-step multi-objective optimization algorithm of cyclone separators is catered for the design objectives. First, the pressure drop (Dp) and collection efficiency (h) in a set of cyclone separators are numerically evaluated. Secondly, two meta models based on the evolved Group Method of Data Handling (GMDH) type neural networks are regarded to model the Dp and h as the re...
متن کاملThe optimized model of factors effecting on the Merger and Acquisition from multiple dimensions with neural network approach.
Nowadays, firms apply the merger and acquisition strategy for gaining synergy, increasing the wealth of stockholders, economics of scales, enhancing efficiency, increasing the ability to research and develop, developing the firm and decreasing the risk. Developing an optimized model with the ability to identify the effective variables on the merger and acquisition process has a significant ...
متن کاملApplication of Artificial Neural Networks and Support Vector Machines for carbonate pores size estimation from 3D seismic data
This paper proposes a method for the prediction of pore size values in hydrocarbon reservoirs using 3D seismic data. To this end, an actual carbonate oil field in the south-western part ofIranwas selected. Taking real geological conditions into account, different models of reservoir were constructed for a range of viable pore size values. Seismic surveying was performed next on these models. F...
متن کاملPrediction of pore facies using GMDH-type neural networks: a case study from the South Pars gas field, Persian Gulf basin
The current study proposes a two-step approach for pore facies characterization in the carbonate reservoirs with an example from the Kangan and Dalanformations in the South Pars gas field. In the first step, pore facies were determined based on Mercury Injection Capillary Pressure (MICP) data incorporation with the Hierarchical Clustering Analysis (HCA) method. In the next step, polynomial meta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Poultry science
دوره 89 6 شماره
صفحات -
تاریخ انتشار 2010